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A method is proposed for calculating the nonsteady radiative-conductive heat 
transfer of semitransparent bodies in the non-one-dimensional case, on the 
basis of the Monte Carlo method and the finite-difference method. 

Radiational-conductive heat transfer (RCH) in semitransparent bodies is of great inter- 
est at present. Although both accurate and approximate numerical methods of RCH calculation 
have been developed in various cases [1-3], most of these approaches are only suitable for 
the calculation of one-dimensional RCH. In the two- or three-dimensional case, traditional 
numerical methods are very cumbersome, especially when the temperature dependence of the 
absorption coefficients and the thermophysical parameters of the bodies must be taken into 
account. In that case, it is expedient to use the Monte Carlo method, in which, essentially, 
a random process is constructed for the given problem, and the parameters of the process are 
determined by calculating its statistical characteristics. Thus, in this approach, the 
basis for RCH calculation is the Monte Carlo method, together with the finite-difference 

method proposed in [4]. 

As a model problem, consider the nonsteady heat transfer through a glass plate bounded 
by semitransparent and black walls at constant temperature in the absence of scattering (Fig. 
i). Such RCH may occur in the viewing windows of high-temperature processes, for example, in 

glass production. 

The system of equations describing RCH in this case, when the absorption coefficient is 
independent of the wavelength and the thermophysical parameters are independent of the tem- 

perature, takes the form 
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Division of sample into cells. 
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The boundary conditions of heat transfer are specified as conditions of the first kind 

T(0, g, t) ----T~; T(L~ ,  y, t) = T 2 ;  T ( x ,  Lu, t) = T a .  (2) 

One initial condition is that the temperature is constant over the whole glass volume: 
T(x, y, 0) = T o . In addition, the symmetry of heat transfer relative to the X-axis implies 
that: 8T/By[y= 0 = 0. 

For numerical solution of Eq. (i), the sample is divided into cells by lines parallel 
to the X and Y axes (Fig. i), and the cooling process is divided into time intervals. With- 
in each cell, the temperature is assumed to be constant in the given time interval. 

The radiation intensity is determined by modeling the photon emission and absorption 
with the temperature distribution corresponding to the given time interval. The radiation 
intensity obtained in each cell is used to calculate the temperatures in the next time in- 
terval. Photon generation is considered for three types of sources: 

i) surface sources 
S k = n2~ (Tab) ~ Ax; (3) 

2) t h e  media  s u r r o u n d i n g  t h e  s e m i t r a n s p a r e n t  b o u n d a r i e s  

S~ = (x (T~)~ AF; (4) 
3) volume sources 

S h,,]= 4n2rs (T~, i) ~ A x A w z  ~. (5) 

The number o f  p a r t i c l e s  e m i t t e d  i s  d e t e r m i n e d  from t h e  r e l a t i o n  

l , / = E  ,1 . 
~ X' ~ (6 )  Sm,z + ~ &, i 

m,l 

Each particle generated is identified with a photon beam of energy 

~ = s~,~ At/ N~ , ( 7 ) 

Since CAt >> L, all the particles generated are either absorbed or leave the sample at the 
end of each time interval. As well as the particle energy, the particle coordinates are 
calculated from relations analogous to those in [4]: 

i) for surface particles 

Xo = O, Xo = L,:, xo = (i - 1 + R) hx ,  (8)  

Y o = ( j - - 1 / - R )  AF, P o = ( j - - I + R )  AF, ~uo=L~,; 

2) for volume particles 

x0 = (i - -  1 + R) Ax, Vo = (] -- I + R) Av.  ( 9 )  

Since the calculations assume a Cartesian coordinate system, the directional cosines 
given by the relations in [5] must be used to specify the direction of flight of the particle 

RI 
~os ~ = v ~ + R~ + R~ 

2 when R ~ + R ~ + R a ~ I .  (i0) 
R2 

cos ~ = V~ + R~ + R~ 

For surface particles with coordinates x = 0 and x = L, taking account of refraction at 
the boundaries, the directional cosines are 

cos ? '  = (1 In) -I/n 2 + cos~ ~ - -  I ,  cos ~ '  = cos ~tn. ( 11 ) 

Then the distance covered by the particle up to absorption is calculated from the expression 
[6] 

d = Iln R i / %  ( 1 2 )  

and the coordinates of the cell in which absorption occurs are 

i' = E [(Xo cos ~ + ~/(Ax cos ~)] + 1, ;i ]' = E [(go cos ~ + d)/(Ay cos ~)] + 1. (13)  

1303 



If j' < 0 or j' > hy, Ithe particle is assumed to leave the sample. If i' < 0 or i' > 
hx !and, in addition, the angle between the direction of flight of the particle and the per- 
pendicular to the plate boundary is no greater than the angle of total internal reflection, 
i.e., nv/l - cos2~ < i, the particle is assumed to undergo total internal reflection. The 
coordinate along the X-axis of this plate is calculated from the recurrence relations 

= + > 0 ,  
[d~_~/(kxcos?) I + 1  when&_1 <0 (14) 

�9 ' <hx- until 0 < i s 

After considering the trajectories of all the particles, the energy balance of each cell 
is determined 

q 

AG~ : N k O k 0 h. . , = ~,i i , : - - ~  -1,p'  ( 1 5 )  
p=t  

The temperature of each cell is determined from the system of equations consisting of 
the energy equations from Eq. (i) in dimensionless and finite-difference form 
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To determine the temperatures 0~+I/2i,: and 0~+) ,  Eq. (16) is solved numerically in each 
t,l 

integer and semi-integer time step by trial and error. 
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Fig. 2. Temperature distribution in sample along X-axis: a) 
Fo = 0.01; b) Fo = ~; i) y = 0; 2) 0.35; 3) 0.5; 4) 0 (data 
of [7]). 
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Fig. 3. Temperature distribution in sample along Y-axis: 
a) Fo 0.01; b) Fo = ~; i) x = 0.75; 2') 0.5; 3) 0.25; 4) 
0.5 (data of [7]). 
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This method is used to calculate the temperature field of a glass plate with the param- 
eter values T x = i, ~y = 2, P = 0.04, 01 = 0.5, G 2 = i, 83 = 0.5. The results are shown in 
Figs. 2 and 3. 

Comparison of Figs. 2 and 3 with the temperature distribution in the steady case (Fo = 
~) obtained by the approximate method of [7] shows that the maximum discrepancy is around 
10%. Comparison of the temperature field obtained with the results of one-dimensional cal- 
culation for conditions corresponding to the middle of the plate shows that the distribu- 
tions are similar. However, the temperature is somewhat lower in the two-dimensional case, 
which is explained by heat extraction from the lateral surfaces. 

The error in calculating the temperature fields is determined by two methods: i) that 
described in [4]; 2) numerical experiment. In the latter case, the surface temperature is 
specified as equal to the initial temperature of the sample. Then the RCH is calculated 
over several tens of time cycles, and the mean square deviation of the temperature of each 
cell from the initial values is determined. Calculations show that, with i00,000 particles 
in each interval and a confidence level of 0.99, the maximum confidence interval in both 
cases is no more than 0.01T0. 

The results obtained indicate that the method proposed may be used for complex (two- 
and three-dimensional) RCH calculations and for the case when the complex interaction of the 
boundary with radiation must be taken into account. 

NOTATION 

T, absolute temperature of glass; Tz, T2, temperature of the medium on both sides of 
the window; T3, temperature of wall in contact with glass; i, j, k, subscripts characteriz- 
ing the division of the sample with respect to the X and Y axes and the time, respectively; 
m = i, 2, 3, subscript denoting one of the media or the wall; ~, analog of i, j for surface 
particles; p, Cp, %, density, specific heat, and thermal conductivity of glass; o, Stefan- 
Boltzmann constant; n, refractive index of glass; X, Y, coordinate axes; Ax, by, coordinate 
steps; ~, cosine of the angle between the direction of the radiation and the X axis; t, 
time; Sm,s S i .k, radiation flux density of surfaces and each cell in the k-th time inter- ' ,] 

val; E[...], integer part of number; N, total number of particles; Ni,jk , number of surface 
or volume particles generated in each time interval; At, time interval; C, velocity of light; 
L, characteristic dimension of sample; Lx, Ly, dimensions of sample along the X and Y axes; 
d, distance covered by the particle before absorption; R, random number uniformly distributed 
in the interval 0-i; R z (z = i, 2, 3), three successive random numbers equal to 1 - 2R; ~, ~, 
angles between the particle trajectories and the X and Y axes;h~=Lx/Ax, hy=Ly/A~, number of in- 

O h total energy of the radiation absorbed by the cell; tervals along the X and Y axes; P%1 i.f.p , 

0i,jk, dimensionless temperature of cell; 0~ = T3/T0, dimensionless temperature of boundary 

k k ~ 4 ~ surfaces; 8~Y~/F0. 02=Y~/Y0 , dimensionless temperatures of media 1 and 2; AQi.i=--~Oij/(n~oT0~.Au~R) 

dimensionless analog of AO~.i: Fo~. F% ; Fourier numbers along the X and Y axes; A~=~RAx, A~=~AU 

optical lengths of cell; r~=~L~.~=~RL~ optical lengths of plate along the X and Y axes; 
P=(%~R)/(n2~T~) radiational-conductive parameter; x~=x/i~, ~=F/L~ , dimensionless coordinates; 
T*=(T--T3)/(T0~T~) , relative temperature. 
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